
Cache locking content selection algorithms for ARINC-653 compliant RTOS
Alexy Torres Aurora Dugo1, Jean-Baptiste Lefoul1, Felipe Gohring de Magalhaes1, Dahman Assal2 and Gabriela Nicolescu1

Polytechnique Montréal1, MANNARINO Systems and Software2

Context
• Avionic software -> real time, determinism and safety
– ARINC-653 standard defines partitioned architectures
– Partitions have multiple threads executing
concurrently

•Modern architectures generate interferences[1]
– Resource sharing
– Contention
•One of themain interference channels are caches[2]
• Private cache levels are intra-partition interferences
• Partition’s threads can evict each others cache data and
generate unwanted delays in execution.

Objectives

• Reduce cache related interferences in single-core and
multi-core architectures
• Reduce contention in shared caches
• Improve private cache performances in critical real-time
embedded systems

Contribution
• Propose a memory tracing framework, capable of
analyzing memory accesses of real-time tasks
• Define new approaches to select the cache lines to lock
based on different criteria
• Integrate cache locking mechanism in an ARINC-653
compliant RTOS

Contact
Alexy Torres Aurora Dugo:
alexy.torres-aurora-dugo@polymtl.ca

Greedy approach Memory Analyzer Framework

Genetic approach

Result

Cache miss improvement using PLRU policy with a reduc-
tion of instruction miss up to 45% and data miss up to
38%.

Cachemiss improvement using PRR policy with a reduction
of instruction miss up to 30% and data miss up to 31%.

Application Not locked Locked Improvement (%)
FFT 868.09 0.55 99.93
ADPCM 1123.80 9.78 99.13
Dijkstra 664.39 10.55 98.49
MatMult 342.13 0.54 99.84
MemM 4031.65 442.01 89.04

Standard deviation of execution time (CPU cycles). Re-
sults show that we significantly reduce the execution time
standard deviation by 97.29% on average.

L2 accesses avoided for PRR policy. Our algorithm allows
to reduce the workload on L2 cache by 45% in some cases
and by 31.5% on average.

Conclusion
• In this work we proposed
– A novel approach to select cache locking content
– A memory analysis framework

The framework allows the integration of algorithms to
consume these traces and generate configuration file to
be used by the RTOS.
•We compared two approaches:
– A greedy approach
– A genetic algorithm

The greedy approach performs better in our context
•We integrated our solution in an existing ARINC-653
compliant RTOS.

We were able to reduce cache misses in private caches by
up to 45% and 25% on average.

References
[1] I. Bate, P. Conmy, T. Kelly, and J. McDermid.

Use of modern processors in safety-critical
applications.
The Computer Journal, 44(6):531–543, 2001.

[2] R. Fuchsen.
How to address certification for multi-core based ima
platforms: Current status and potential solutions.
In 29th Digital Avionics Systems Conference, pages
5.E.3–1–5.E.3–11, Salt Lake City, UT, USA, Oct 2010.

Acknowledgements

The authors would like to thank the industrial partner
MANNARINO Systems & Software for their support and
their help. We also would like to thank MITACS and CRIAQ
for founding this research.

1/1


