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Context
• Avionic software -> real time, determinism and safety
– ARINC-653 standard defines partitioned architectures
– Partitions have multiple threads executing
concurrently

•Modern architectures generate interferences[1]
– Resource sharing
– Contention
•One of themain interference channels are caches[2]
• Private cache levels are intra-partition interferences
• Partition’s threads can evict each others cache data and
generate unwanted delays in execution.

Objectives

• Reduce cache related interferences in single-core and
multi-core architectures
• Reduce contention in shared caches
• Improve private cache performances in critical real-time
embedded systems

Contribution
• Propose a memory tracing framework, capable of
analyzing memory accesses of real-time tasks
• Define new approaches to select the cache lines to lock
based on different criteria
• Integrate cache locking mechanism in an ARINC-653
compliant RTOS
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Result

Cache miss improvement using PLRU policy with a reduc-
tion of instruction miss up to 45% and data miss up to
38%.

Cachemiss improvement using PRR policy with a reduction
of instruction miss up to 30% and data miss up to 31%.

Application Not locked Locked Improvement (%)
FFT 868.09 0.55 99.93
ADPCM 1123.80 9.78 99.13
Dijkstra 664.39 10.55 98.49
MatMult 342.13 0.54 99.84
MemM 4031.65 442.01 89.04

Standard deviation of execution time (CPU cycles). Re-
sults show that we significantly reduce the execution time
standard deviation by 97.29% on average.

L2 accesses avoided for PRR policy. Our algorithm allows
to reduce the workload on L2 cache by 45% in some cases
and by 31.5% on average.

Conclusion
• In this work we proposed
– A novel approach to select cache locking content
– A memory analysis framework

The framework allows the integration of algorithms to
consume these traces and generate configuration file to
be used by the RTOS.
•We compared two approaches:
– A greedy approach
– A genetic algorithm

The greedy approach performs better in our context
•We integrated our solution in an existing ARINC-653
compliant RTOS.

We were able to reduce cache misses in private caches by
up to 45% and 25% on average.
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