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Context

e Avionic software -> real time, determinism and safety

- ARINC-653 standard defines partitioned architectures
- Partitions have multiple threads executing
concurrently

e Modern architectures generate interferences|1]

- Resource sharing
- Contention

e One of the main interference channels are caches|[2]
e Private cache levels are intra-partition interferences

e Partition’s threads can evict each others cache data and
generate unwanted delays in execution.

Objectives

e Reduce cache related interferences in single-core and
multi-core architectures

e Reduce contention in shared caches

e [mprove private cache performances in critical real-time
embedded systems

Contribution

e Propose a memory tracing framework, capable of
analyzing memory accesses of real-time tasks

e Define new approaches to select the cache lines to lock
nased on different criteria

e |[ntegrate cache locking mechanism in an ARINC-653

compliant RTOS
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Greedy approach
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Cache miss improvement using PLRU policy with a reduc-
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of instruction miss up to 30% and data miss up to 31%.
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Application Not locked Locked Improvement (%)
FFT 868.09 0.55 99.93
ADPCM 1123.80 9.78 99.13
Dijkstra 664.39 | 10.55 98.49
MatMult 342.13 0.54 99.84
MemM 4031.65 | 442.01 89.04

Standard deviation of execution time (CPU cycles). Re-
sults show that we significantly reduce the execution time
standard deviation by 97.29% on average.
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L2 accesses avoided for PRR policy. Our algorithm allows
to reduce the workload on L2 cache by 45% in some cases
and by 31.5% on average.

Conclusion

e [n this work we proposed

- A novel approach to select cache locking content
- A memory analysis framework

The framework allows the integration of algorithms to
consume these traces and generate configuration file to
be used by the RTOS.

e \We compared two approaches:

- A greedy approach
- A genetic algorithm

The greedy approach performs better in our context

e We integrated our solution in an existing ARINC-653
compliant RTOS.

We were able to reduce cache misses in private caches by

up to 45% and 25% on average.
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