Cache locking content selection algorithms for ARINC-653 compliant RTOS

Alexy Torres Aurora Dugo', Jean-Baptiste Lefoul, Felipe Gohring de Magalhaes', Dahman Assal® and Gabriela Nicolescu’

Context

e Avionic software -> real time, determinism and safety

- ARINC-653 standard defines partitioned architectures
- Partitions have multiple threads executing
concurrently

e Modern architectures generate interferences|1]

- Resource sharing
- Contention

e One of the main interference channels are caches|[2]
e Private cache levels are intra-partition interferences

e Partition’s threads can evict each others cache data and
generate unwanted delays in execution.

Objectives

e Reduce cache related interferences in single-core and
multi-core architectures

e Reduce contention in shared caches

e [mprove private cache performances in critical real-time
embedded systems

Contribution

e Propose a memory tracing framework, capable of
analyzing memory accesses of real-time tasks

e Define new approaches to select the cache lines to lock
nased on different criteria

e |[ntegrate cache locking mechanism in an ARINC-653

compliant RTOS

Contact

Alexy Torres Aurora Dugo:
alexy.torres-aurora-dugo@polymtl.ca

POLYTECHNIQUE
MONTREAL

UNIVERSITE
D'INGENIERIE

MANNARINGO

Polytechnique Montréal', MANNARINO Systems and Software?

Greedy approach

L1 Data Container

5 B:27 B:16 B:2
20 H:23 H:43 H:56
99 M:3 M: 2 M: 35

Block ID =

Address / Cache Line Size B:
H:
M:

L1 Instruction Container

B:87 B:76 B:54 B:33
H:98 H:24 H:3 H: 0
M: 2 M:56 M:23 M:99

Dispatcher

Cache
Simulator

L2 Container

B:12 B:33
H:24 H:55
M:56 M: 44

B: Block ID
H: Cache Hits
M: Cache Misses

WAY 2 | WAY 3 | wAY 4 WAY 1 | WAY 2 | WAY 3 | wAy 4
W=234 | SETO 0 50 w=102
W=453 SET1 | 5 165 345 W= 550
W=332 SET2 | 2 342 674 W= 564
~ w=45 SET3| 27 43 543 W= 234
WAY 1| WAY 2 | WAY 3 | wAy 4 WAY 1 | WAY 2 | WAY 3 | wA 4
76 0 W=142 | SETO | 76 = O 560 64 W=460
5 165 W=334 SET1 | 5 165 345 321 W=455
2 342 w=310 SET2 | 2 342 674 22 = W=554
27 43 W=123 SET3 | 27 = 43 543 123 W=604

20

40

30

40 | i
30 |
20
20 [1
10_ I _o 10_
0l == B I . —_] ol B2
S

\
IO S >

% of improvement
% of improvement

lI ll II II
ol $® & & QQ’& O&

AP
W & ~a & & §Q’ Q&' §Q RS

BEL1rlEL1D Berit@eL1D

Cache miss improvement using PLRU policy with a reduc-

50 | - 40

40 :]
30 | a
20
20 | 1.
ol II I | 10}
ol l O O I =
\

N v > Nz

S & O o ¢

Qo ol
NP P P S

30

% of improvement
% of improvement

Cache miss improvement using PRR policy with a reduction

tion of instruction miss up to 45% and data miss up to
4
Q/&

38%.
l| II
¢ &

QQ' Q‘f\,\ ’@Q S

BerLiilmL1D BeritlerL1D

of instruction miss up to 30% and data miss up to 31%.

Memory Analyzer Framework

ARINC-653 RTOS + Applications

Modified Qemu Memory tracer

Configuration
parser
Performance .

Framework algorithm
(Cache locking)

ARINC-653
Scheduling

Performance
Report
Cache -
Configuration

Algorithm Output

Framework
Configuration

Genetic approach

Parent 2

Parent 1
16 20 24 28
17 21 25 29
18 22 26 30
19 23 27 31
Y Individual Mutated Individual
Child 1 Child 2

: : : : -:D-

17 21 25 29

18 2 26 30 m
19 23 27 31

Application Not locked Locked Improvement (%)
FFT 868.09 0.55 99.93
ADPCM 1123.80 9.78 99.13
Dijkstra 664.39 | 10.55 98.49
MatMult 342.13 0.54 99.84
MemM 4031.65 | 442.01 89.04

Standard deviation of execution time (CPU cycles). Re-
sults show that we significantly reduce the execution time
standard deviation by 97.29% on average.

50 |

40

30 |- -

20

% of miss avoided

10

L2 accesses avoided for PRR policy. Our algorithm allows
to reduce the workload on L2 cache by 45% in some cases
and by 31.5% on average.

Conclusion

e [n this work we proposed

- A novel approach to select cache locking content
- A memory analysis framework

The framework allows the integration of algorithms to
consume these traces and generate configuration file to
be used by the RTOS.

e \We compared two approaches:

- A greedy approach
- A genetic algorithm

The greedy approach performs better in our context

e We integrated our solution in an existing ARINC-653
compliant RTOS.

We were able to reduce cache misses in private caches by

up to 45% and 25% on average.

References

[1] I. Bate, P. Conmy, T. Kelly, and J. McDermid.
Use of modern processors in safety-critical

applications.
The Computer Journal, 44(6):531-543, 2001.

[2] R. Fuchsen.
How to address certification for multi-core based ima
nlatforms: Current status and potential solutions.

n 29th Digital Avionics Systems Conference, pages
5.E.3-1-5.E.3-11, Salt Lake City, UT, USA, Oct 2010.

Acknowledgements

The authors would like to thank the industrial partner
MANNARINO Systems & Software for their support and

their help. We also would like to thank MITACS and CRIAQ
for founding this research.

Minnacs A.criaa

1/1

