
Multi-core Safety-Critical Memory Manager
Alexy Torres Aurora Dugo, Gabriela Nicolescu, Polytechnique MontrealDAC YF

Avionic software -> real-time, deterministic and 
safety-critical

Hard partitioned CPU time / resources

Interferences appear in Multi-Core architectures
- Shared resources mechanisms
- Contention

Processors evict other cores' data from shared 
caches

Shared bus get contended: arbitration generates 
unpredictable delays

Context

Bound bus contention to ensure QoS
- Memory bandwidth limitation

Remove shared cache interferences
- Application space coloring / partitioning

Ease certification process
- Set of formalized constraints 
- Run-time monitoring

Objectives

Results

Conclusion

Approach

Memory Coloring

Physical address multiplexing
- DRAM Bank bit selection
- Cache Set bit selection

Virtual / Physical translation used to
choose where to place the
application’s data

Distributed monitoring mechanism
Rely on Commercial Off-The-Shelf hardware
Private mechanism – Each core managed independently

Bus Access Throttling

Per application throttling
- SOTA: per CPU
- Allows finer configuration

4 reclaiming modes

Run-Time Monitoring (Safety Net)

Formal constraints – Used in formal system’s verification
Run-time monitoring – Recovery in case of unhandled interference

Increased predictability 
by 68% on average

Increased execution 
time (+22.3%) on 2 
cores

Still advantageous
compared to single core 
(less than 100% 
slowdown)

Small overhead 
introduced by the 
isolation mechanism 
(less than 2%)

AMP architecture 
ensures scalability

Our work ensures correct isolation of shared 
resources and removes state-of-the-art limitations

The presented methodology is applied in a 
commercial RTOS, extended to 4 cores

The low overhead makes our proposition 
applicable without hard constraints on the system.

Physical address multiplexing

Throttling mechanism timelineMajor Time Frame scheduling table
Predictability analysis

Execution time increase


