
Efficient Scheduling, Mapping and Memory Bandwidth Allocation for Safety-Critical Systems
A. Torres AD1, J-B. Lefoul1, A. Ben-Salem1, S. Harnois2, F. Gohring de Magalhaes1, and G. Nicolescu1

Polytechnique Montréal1, MANNARINO Systems and Software2

Context
• Safety critical -> real-time, determinism and safety
– Fixed scheduling
– Fixed resource allocation and management

•Multi-core architectures share components
– Contention on memory bus
– Generation of interferences
• Bus contention leads to unpredictable execution time
• Co-scheduling andmapping can increase or decrease
interferences

Bandwidth control is used to limit bus contention.
Budget: number of bus transaction for a regu-
lation period R. When budget is exceeded, the
partition is paused until next regulation period.

Objectives

•Optimize bandwidth allocation to maximize
performances.
• Help the system designers to generate a mapping and
scheduling scheme.
• Extend current state-of-the-art with scalable methods
that are applicable in real life.

Contributions
• Propose a novel method capable ofmapping,
scheduling and allocating bus budgets while scaling
with the size of the system.
• Introduce constraints on partitions required by real-life
applications (dependencies, mapping and release time).
•Overcome previous work limitations (partitions with
different periods, cores with different scheduling).

System Model
N cores,M partitions Pk
MAF Qi (i ∈ [0;N-1]) divided in Qi

R quanta q of length R
Pk = 〈Tk,Ak,Nk, (Kk; Xk)〉. Tk: Period. Ak: Release time.
Nk : Set of cores on which Pk can mapped.
(Kk; Xk) : Couple of bus budget and allocated time.

• Dependency: Pj depends on Pi =⇒ Aj ≥ Ai + Xi.
• Release time: Constrained release time =⇒ Ak = cst.
•Mapping: Constrained core set =⇒ Nk = {1, 3...}.

Solution: array of budgets, kth element =⇒ budget of Pk.

Solution Search
Evolutionary approach to find (Kk; Xk) for all partitions:
1) Generate set of neighbor solutions
2) Precheck each neighbor
3) For each neighbor, find a scheduling / mapping scheme
using best fit

Objective function based search -> not only provide a
solution but also optimize it

Scaling Methods
Precheck for a given set of (Kk; Xk):

P2 
0 ≤ A2 ≤ 33

(K2, X2) = (20, 2) 
N2 = -1

P1 
A1 = 35

(K1, X1) = (20, 1) 
N1 = -1

P0 
2 ≤ A0 ≤ 36

(K1, X1) = (60, 4) 
N0 = 1

P3 
36 ≤ A3 ≤ 34

(K3, X3) = (40, 6) 
N3 = -1 P4 

A4 = 40
(K4, X4) = (5, 10) 

N4 = -1

max(Ak) = min
∀j if k∈Dep(j)

{max(Aj)} − Xk (1)

min(Ak) = mx
∀j∈Dep(k)

{min(Aj) + Xj} (2)

Valid if 0 ≤ min(Ak) ≤ max(Ak) ≤ Tk − Xk (3)

Speed up best fit: use time slot instead of quanta

Time slots gather multiple quanta, reducing the number
of comparisons for the best fit algorithm.

Results
We extended the ILP model (SOTA) to take into account
constraints and compare it with our approach (SMA).
We generated 100 sets with the following parameters:

Name Description Values
n Number of partitions in the system 2, 4, 8, 16, 32, 64
c Number of cores in the system 2, 4, 8, 16
μ Average system’s memory intensity 10%, 20%, 30%, 50%
Q MAF length (in number of quantum) [25; 300] by step of 25
Inc Evolutionary step size 5

Execution times of SMA and SOTA (in seconds).

2 Cores (c = 2) 4 Cores (c = 4)
μ(%) SOTA SMA SOTA SMA

4P 8P 4P 8P 8P 16P 8P 16P

10 1.3 51.2 2.5 5.7 1645.4 1611.0 61.7 155.1
20 17.5 179.3 2.6 6.53 1727.5 1721.9 70.4 357.3
30 20.9 1182.3 33.8 68.3 2047.8 2367.9 78.1 452.0
50 137.5 2409.5 40.5 314.1 4962.7 5409.5 85.7 528.5

SMA is 9.64 times faster for 2-cores systems and 42.26
times faster for 4-cores systems.

Schedulability results for SOTA and SMA (c = 4).
SOTA SMA Partial solutions

μ (%) 8P 16P 8P 16P 8P 16P
10 91% 91.3% 91% 91.1% 7 14
20 86.3% 86.8% 84.3% 84.5% 7 13
30 79% 78.8% 75.3% 75.1% 6 13
50 73.1% 73.2% 70% 69.7% 6 11

SMA schedules between 69% and 88% of the partitions.
We provide the reasons (deadline miss, budget overflow,
etc.) of the non-schedulability.

Solving the real-life ROSACE system on all cores (Mapping
1) or two cores (Mapping 2).

2 4 8 16
0

0.5
1

1.5
2

2.5

Number of cores

Ex
ec
ut
io
n
tim

e
(s
)

Mapping 1
Mapping 2

Problem Scaling

25 75 125 175 225
0

2,000

4,000

MAF length (regulation periods count)

Ti
m
e
(s
) SOTA

SMA

Comparison of the time elapsed to find a solution
depending on the MAF length.

2 4 8 16 32
0
20
40
60

Number of cores

Ti
m
e
(s
) 2 parts / core

4 parts / core

SMA solving time for different system configurations.

Conclusion
In this work we propose a novel method to:
• Provide scheduling, mapping and bandwidth allocation
for partitioned systems.
• Allow the use of real-life constraints.

We improve the scalability compared to existing work:
•Our method is up to 42.26 times faster and scales well
with the size of the system.
• SMA schedules between 69% and 88% of the data sets.
•We provide partial solutions when the system is not
schedulable.

Our approach was successfully adapted to a real-life case
study (ROSACE).

Acknowledgements and Contact
Contact: alexy.torres-aurora-dugo@polymtl.ca
The authors would like to thank NSERQ and CRIAQ for
supporting this research.

1/1


