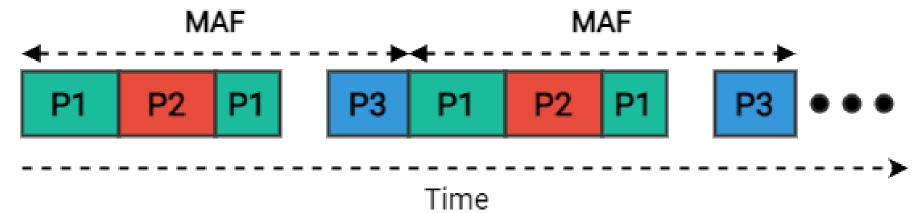
Efficient Scheduling, Mapping and Memory Bandwidth Allocation for Safety-Critical Systems

Context

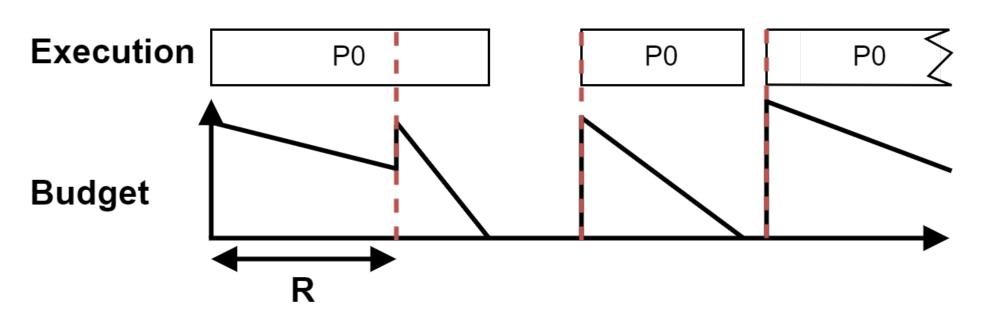
- Safety critical -> real-time, determinism and safety
- Fixed scheduling
- Fixed resource allocation and management



- Multi-core architectures share components
- Contention on memory bus
- Generation of **interferences**
- Bus contention leads to unpredictable execution time
- **Co-scheduling** and **mapping** can increase or decrease interferences

Bandwidth control is used to limit bus contention.

number of bus transaction for a regu-Budget: When budget is **exceeded**, the period R. lation partition is paused until next regulation period.



Objectives

- **Optimize** bandwidth allocation to maximize performances.
- Help the system designers to generate a mapping and scheduling scheme.
- **Extend** current state-of-the-art with scalable methods that are applicable in real life.

Contributions

- Propose a novel method capable of **mapping**, scheduling and allocating bus budgets while scaling with the size of the system.
- Introduce **constraints** on partitions required by **real-life** applications (dependencies, mapping and release time).
- Overcome previous work limitations (partitions with different periods, cores with different scheduling).

A. Torres AD¹, J-B. Lefoul¹, A. Ben-Salem¹, S. Harnois², F. Gohring de Magalhaes¹, and G. Nicolescu¹

Polytechnique Montréal¹, MANNARINO Systems and Software²

System Model

N cores, M partitions P_k

MAF Q_i ($i \in [0; N-1]$) divided in $\frac{Q_i}{R}$ quanta q of length R $P_k = \langle T_k, A_k, N_k, (K_k; X_k) \rangle$. T_k : Period. A_k : Release time. N_k : Set of cores on which P_k can mapped. $(K_k; X_k)$: Couple of bus budget and allocated time.

- **Dependency**: P_i depends on $P_i \implies A_i \ge A_i + X_i$.
- **Release time**: Constrained release time $\implies A_k = cst$.
- Mapping: Constrained core set $\implies N_k = \{1, 3...\}$.
- Solution: array of budgets, k^{th} element \implies budget of P_k .

Current solution

35 45 75 50 30

Solution Search

Evolutionary approach to find $(K_k; X_k)$ for all partitions:

- 1) Generate set of neighbor solutions
- 2) Precheck each neighbor
- 3) For each neighbor, find a scheduling / mapping scheme using best fit

Objective function based search -> not only provide a solution but also optimize it

Results

We extended the ILP model (SOTA) to take into account constraints and compare it with our approach (SMA). We generated 100 sets with the following parameters:

Name	Description	Values		
n	Number of partitions in the system	2, 4, 8, 16, 32, 64		
С	Number of cores in the system	2, 4, 8, 16		
μ	Average system's memory intensity	10%, 20%, 30%, 50%		
Q	MAF length (in number of quantum)	[25; 300] by step of 25		
Inc	Evolutionary step size	5		

Execution times of SMA and SOTA (in seconds).

	2 Cores (c = 2)				4 Cores (c = 4)			
μ (%)	SOTA		SMA		SOTA		SMA	
	4P	8P	4P	8P	8P	16P	8P	16P
10	1.3	51.2	2.5	5.7	1645.4	1611.0	61.7	155.1
20	17.5	179.3	2.6	6.53	1727.5	1721.9	70.4	357.3
30	20.9	1182.3	33.8	68.3	2047.8	2367.9	78.1	452.0
50	137.5	2409.5	40.5	314.1	4962.7	5409.5	85.7	528.5

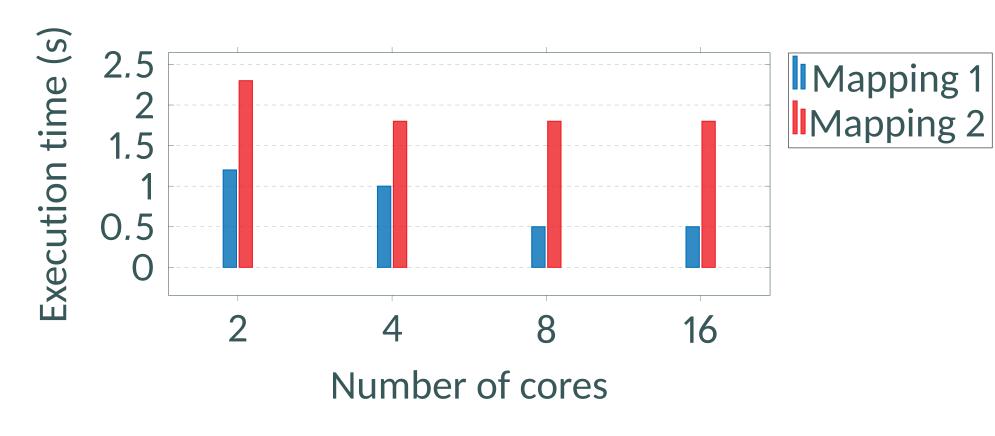
SMA is **9.64 times faster** for 2-cores systems and **42.26** times faster for 4-cores systems.

Speed up best fit: use time slot instead of quanta

Time slots gather multiple quanta, reducing the number of comparisons for the best fit algorithm.

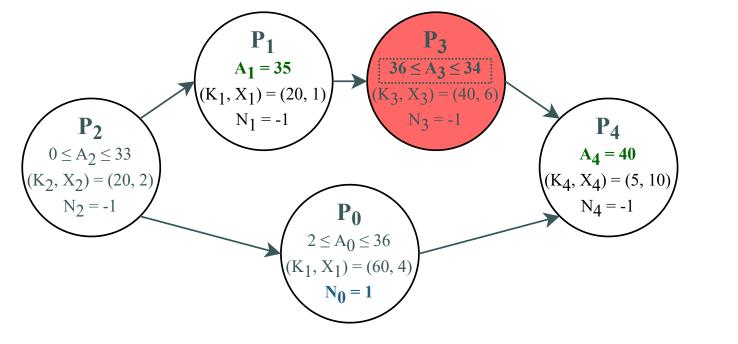
SMA schedules between 69% and 88% of the partitions. We provide the reasons (deadline miss, budget overflow, etc.) of the non-schedulability. Solving the real-life ROSACE system on all cores (Mapping

1) or two cores (Mapping 2).



Scaling Methods

Precheck for a given set of $(K_k; X_k)$:



$$\max(A_k) = \min_{\forall j \text{ if } k \in Dep(j)} \{\max(A_j)\} - X_k$$
(1)

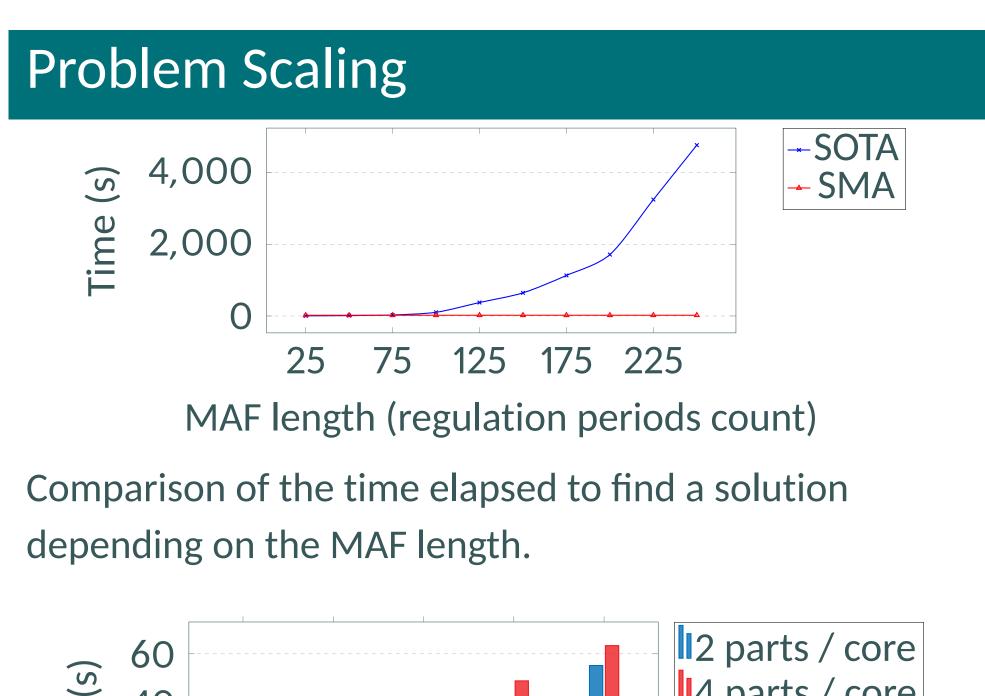
$$\min(A_k) = \max_{\forall j \in Dep(k)} \{\min(A_j) + X_j\}$$
(2)

Valid if $0 \leq min(A_k) \leq max(A_k) \leq T_k - X_k$ (3)

Slot 1 (P_0) Slot 3 (P_0) MAF Core 0 Slot 0 (free) Slot 2 (free)

Schedulability results for SOTA and SMA (c = 4).

	SC	ATC	SMA		Partial solutions		
μ (%)	8 P	16P	8 P	16P	8 P	16P	
10	91%	91.3%	91%	91.1%	7	14	
20	86.3%	86.8%	84.3%	84.5%	7	13	
30	79%	78.8%	75.3%	75.1%	6	13	
50	73.1%	73.2%	70%	69.7%	6	11	



SMA solving time for different system configurations.

Conclusion

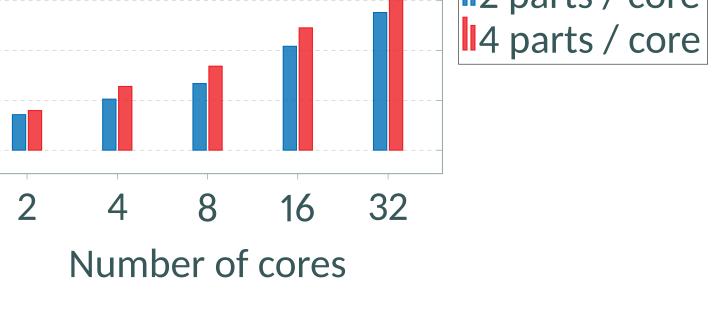
- Provide scheduling, mapping and bandwidth allocation for partitioned systems.
- Allow the use of **real-life constraints**.

- Our method is up to 42.26 times faster and scales well with the size of the system.
- SMA schedules between 69% and 88% of the data sets. • We provide **partial solutions** when the system is not schedulable.

study (ROSACE).

Acknowledgements and Contact

POLYTECHNIQUE MONTRÉAL



- In this work we **propose** a novel method to:
- We improve the **scalability** compared to existing work:
- Our approach was successfully adapted to a real-life case
- Contact: alexy.torres-aurora-dugo@polymtl.ca
- The authors would like to thank NSERQ and CRIAQ for supporting this research.

