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Abstract—Cache memories have been in every computer
since 1980, time at which the speed of the CPU surpassed
the speed of the memory. Since then, this speed gap has kept
increasing continuously. With the advent of new technologies and
new architectures such as many-core architectures, memories
hierarchies added to the processors may not be coherent
anymore, making shared data access a new challenge in terms of
efficiency and production cost. As a result, in many architecture
hardware cache coherency protocols as we know them are
no longer hardware-supported, leading to the development
of software-based methods to maintain cache coherency. This
article gives a comparison of different methods used in the
DNA/OS operating system kernel to maintain cache coherency
with a software-based approach.
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I. INTRODUCTION

DNA/OS is a SMP 1 based operating system kernel executed
only in kernel mode[1]. Lightweight and well structured, it was
made to be easily ported on multiple architectures. Already
ported to ARMv7, MIPSIV, x86, Sparc V8 and Microblaze,
DNA/OS is being modified to run on the new Karlay MPPA-
256 Bostan architecture. The kernel has already been ported
on the many-core architecture, but due to the lack of cache
coherency support, data caches have been deactivated.
The K1 processor architecture is being developed by KALRAY
and has the particularity to be a part of the many-core archi-
tectures. The chip is composed of sixteen clusters attached
to a NoC. Each cluster contains 16 processors running at
a frequency of 400MHz to 800MHz, and each processor
accesses memory through a L1 data and instruction cache of
8KB[2]. There is no hardware support for cache coherence
inside the cluster. The cluster also contain a 2MB L2 cache.
In this article, we will only show the result obtained by loading
the kernel and the applications directly in this cache, thus
referring to the L2 cache as “main memory”.

II. PRELIMINARY WORK

A. Cache writing policies

Two cache writing policies exist. They define the way data
are written in the memory and handled in the cache.
The WRITE-THROUGH access scheme allows an immediate
data write back into the lower memory level once a data has

1Symmetric multiprocessor

been modified by a program. In a multiprocessor system, this
policy minimizes the number of cache incoherence cases but
may induce latency on multiple successive memory accesses.
The WRITE-BACK access scheme copies the data back to
memory only when an evicted cache line is marked as dirty.
In a coherent multiprocessor system, it mush also copy back
the data when an other processor wants to access a data which
is marked as dirty in an other cache.
The K1 architecture allows the user to set the cache writing
policy. To simplify the work described in this article, we chose
to set the cache writing policy to WRITE-THOUGH since this
scheme induce less cache incoherences than the WRITE-BACK
scheme[3].

B. Cache consistency models

Memory consistency models or schemes define the access
scheme to the memory by a component. The memory access
order will depend on the selected scheme. Multiple models
exist but we will only describe the most important ones in
this article.
SEQUENTIAL CONSISTENCY is one of the strongest memory
model with the STRICT CONSISTENCY model. In this scheme,
each processor has an exclusive access to a part of the
memory. Even if data writes by processors do not have to
be seen instantaneously by other processors, they must occur
in a sequential order which should be the same for all the
processors.
PROCESSOR CONSISTENCY scheme forces data writes done
by two different processors on the same location to be seen in
the same order than the actual writes order. Two writes done
on a different location, however, do not need to be seen in the
actual order by all the processors.
WEAK CONSISTENCY enforce data reads to be finished only at
synchronization points. Data writes must be visible by all other
processors only when necessary at synchronization points.
Process scheduling, however, should be done sequentially and
the order should be the same for all the processors.
RELEASE CONSISTENCY model defines a lock based data
access scheme. Before each data write or read, the processor
must have gone through all synchronization entry points.
When reaching the last synchronization release points, all data
accesses (reads/writes) must have been finished and visible by
all the processors. The synchronization order is defined by the
PROCESSOR CONSISTENCY model.



ENTRY CONSISTENCY enforces all accesses (reads/writes) to
a memory chunk to be finished and visible to the processor
before it acquires the memory. With this scheme only one
processor has access to a certain memory chunk.

III. COHERENCY PROTOCOLS

Most of the protocols used to ensure cache coherence
are based on hardware support or, when non existent, on
software support. The following sections describe the most
used approaches to ensure cache coherence.

A. Hardware based protocols

1) Snooping protocols: These protocols are based on
a bus interconnection between different processors. The
snooping cache protocols use the cache controller of each
processor connected to the bus. The controllers watch the
traffic occurring on the bus and modify their state according
to a finite state automaton. For instance, when a data is
modified en written back in main memory, each controller
will check if the data was present in their cache. If so,
depending on the protocols used 2 the corresponding cache
line will be invalidated or updated. The protocols may be
different depending on the cache writing policy used by the
processors.
These protocols are relatively simple thanks to the use
of the shared bus connection that acts as a broadcast
mechanism. However the method is not adapted to many-core
architectures because of the use of the bus itself. Connecting
multiple cores/processors to a shared bus divides the available
bandwidth by the number of components to connect. Indeed,
it will become inefficient to share this bandwidth by more
than eight or sixteen processors.

2) Directory based protocols: Directory based protocols
maintain coherency using main directories. These memories
keep track of the different states (dirty, shared, exclusive, ...)
of a cache line. Depending on the protocol, one or multiple
directories may be used to create redundancy in order to
minimize the access time to these memories. During each
memory access (in case of cache-miss), the processor that
makes the access has to read the directory to know where the
data is stored. Then, depending on the protocol, the processor
will have to invalidate a line of cache, modify or add the sate
of the cache line in the directory or simply access the data.
Directory based protocols ensure a great scalability[4] in the
system. Each processor must be linked to the directory but
multiple bus can be used, which addresses the snooping base
protocols bus bandwidth issue. When the number of cores to
connect to the the directory is over sixty-four, the directory
access latency3 adds too much overhead to the method to be
efficient.

2MSI, MESI, MOESI, ...
3The directory needs to be accessed by one processor at a time.

3) Distributed directory based protocols: Coming from
the generic directory based protocols family, distributed
directory based protocols use multiple directories called
banks to decrease the storage charge. Each bank has its
directory containing the cache lines state concerning the
nearest processors. This allows to use cache locality property
and decrease directory access overhead time. However, this
protocols family enforces using multiple memories and
increases the hardware cost of the protocols. It is possible to
lower the memory size impact by using filters to predict data
existence in the directory 4.
DHCCP[5] and SPACE[6] protocols are a part of the
distributed directory based protocols. They also add shared
memory access pattern detection mechanism to decrease
directory access time.

4) Hierarchical directories based protocols: Using
different level to represent data share level. A binary tree
architecture is the most used structure to store data. Each leaf
is a processor and internal nodes directories. Each directory
only contains cache lines information concerning caches
related to processors present in its sub-tree. Searching the
cache line information is accelerated thanks to this property.
One directory is divided into multiple directories which
reduce memory usage by avoiding memory redundancy. This
method also reduce the charge sustained by one directory.
Finally some protocols use data redundancy methods to allow
more efficient cache line information searches. The tree
structure and the data redundancy address the concurrency
management overhead and allow these protocols to be fully
scalable to more than 128 processors.
The SCD[7] protocol uses this architecture to ensure cache
coherence.

5) Private/Shared classification based protocols: Most of
the current researches lean toward these protocols. The clas-
sification allows to manage cache line with more precision
and avoid false invalidation. A generic classification scheme
is given :

• Private: the data is only present in one cache.
• Shared: the data is present in multiple caches.

In this case cache coherence is only maintained for shared
data. This removes overhead resulting from false invalidation
when a data is supposed shared but is actually only used by
one processor. A software-hardware hybrid implementation,
combined to the ability to manage shared and exclusive data
allows to get efficient results[8] but may be complex to
design[9]. It is also important to note that some protocols
have a page granularity instead of the usual line granularity
management. Protocols such as VIPS[10] and SVIPS[11] use
these principles.

4Bloom filters have been used for this purpose.



Fig. 1. Cache coherence protocol hierarchy[12]

B. Software based protocols
Multiple works have been done on software based cache

coherence protocols. Most of the solutions designed are in-
spired by hardware protocols, taking the hardware finite state
machine to the software level in order to manage the cache.
The compiler and operating system are usually involved in
the protocol. However using software protocol requires special
access to the memory (un-cached access) and optimal design to
avoid the software processing overhead. SVIPS is an example
of these transformation from hardware to software. Software
protocols usually use the page granularity to enforce coherence
between multiple data, thus based on highly intensive opera-
tions such as page comparison or dictionary search. Moreover
the memory usage overhead of these methods may be an issue
on some architectures. The main memory overhead comes
from the copy of a page in cache, one is modified and the other
copy will allow to compare the modifications done since the
page was retrieved in the cache. Comparison is usually done
on cache eviction or when modifying shared/dirty cache lines.
In our case, the K1 cluster architecture has only 2MB that we
can use to run user software and DNA/OS. As a result, using
these memory-expensive protocols is not possible.

C. Hardware/Software protocols
In order to take both advantages of the software and

hardware protocols, “hybrid” protocols have been designed.
Flask[13] is an example of such a protocol which uses snoop-
ing methods to ensure coherence aside with directory based
methods to address the scalability issues of the snooping based
protocols. It is also frequently possible to see protocols being
able to vary their granularity 5 to increase their performances.

D. MPPA-256 constraints
The K1 architecture is composed of 16 clusters. Our work

only concerns one cluster. Each cluster is composed of 16

5chunk, page, line

processors with 8KB level 1 data/instruction cache. The level
2 cache is referred as the main memory in which DNA/OS and
the user software are injected. This memory has a capacity
of 2MB which is the most difficult constraint to overcome
when designing the cache coherency protocol. The number of
processors in the cluster being relatively high, the protocol
should also be scalable.

IV. DNA/OS PROTOCOLS

To compare software based protocols, we used the modular
structure of DNA/OS to implement different protocol schemes
and run the benchmark programs on the Bostan MPPA-256
from KALRAY. Each protocol ensures cache coherence at
cluster level. The write policy selected for the comparison is a
write-through policy. Every time a data is modified, the cache
line containing the data will be put in a write-buffer present in
the K1 architecture and eventually written to memory, without
freezing the processor.

A. Lock based protocol

This protocol is based on the entry/release memory con-
sistency model. Each time a lock is acquired, the kernel will
invalidate all the L1 data cache lines of the processor that
acquired the lock. During the lock release process, all the L1
cache lines will be purged in the main memory 6. This process
is done by purging the write-buffer.
The main limit of this method is that it does not ensure
coherence with programs allowing race condition on data
manipulated by multiple processors concurrently.

B. Trace analysis

Based on the work of Cunha [3], that advocates to simply
invalidate a shared line prior to reading it, knowing that the
write will eventually reach memory, the code of DNA/OS
was modified to maintain cache coherence in the kernel. Each

6The cluster L2 cache



time a potential cache coherence violation is detected in the
execution trace of the kernel, a cache line invalidation/purge
instruction has to be added to the source code.

C. Software buffer based cache coherency protocol

The protocol we implemented is inspired by the method
proposed by J. Cai et A. Shrivastava[14].
To ensure cache coherence, we rely on three elementary
operations during program execution: lock acquisition, data
writing and that lock release. As previously stated, this method
will not ensure coherence in a program that allows race
conditions on data during its execution. The protocol scheme
is described in FIGURE 2.

• Lock acquisition: before acquiring the lock, the system
will invalidate the cache line that contains data modified
by other processors before the lock is actually acquired.

• Data writing: when a data is modified by the processor, a
WRITE-NOTICE is created and inserted in the write-notice
buffer. The following process will be further described.

• Lock release: before releasing the lock, all cache lines
containing dirty data will be purged to the main memory.

Two data structures have been created to register dirty data
addresses that need to be purged when the lock is released.
These structures are also needed during the lock acquisition
process in order to check whether a cache line has to be
invalidated or not.

• The write-notice is an entry containing the address of the
modified data. The structure also contains an invalidation
bit vector. The vector allows the protocol to keep track
of which processor has already invalidated the data in
its cache since the last modification. This method avoid
falses invalidation during lock acquisition process. The
write notice structure is a node in a linked list, allowing
to store them in the memory.

• The write notice buffer is contained in the main memory
and accessed in an uncached way. This is not an actual
entity but a linked list header pointing to the first write
notice.

1) Data writing detection: To create a write notice each
time a data is modified in the cache, we need to detect data
writing during execution. The first method to achieve this is to
modify the compiler to add a call to the write-buffer creation
function after each memory writing. The second way is to ask
the user to add this call to the function each time a data is
modified in the program.
One may also want to detect data writing without intrusion
in the user’s code. This is possible thanks to the MMU7.
Each core of a cluster has its own MMU which should allow
the kernel to detect every data access and decide to create a
write notice when it is needed. This method, however, is not
realizable on the K1 architecture.
Un-cached data writing need to be registered too (to invalidate
the data if needed) but will not require cache line purge when
releasing the lock.

7Memory management unit.

Fig. 2. Protocol processing steps

The method we selected to perform the comparison is the
second one, where the user need to call the write-notice create
function after each data modification.

D. First implementation of the protocol

struct write_notice_t
{

uint32_t data_addr;
uint16_t updated_cpu_mask;

write_notice_t * next;
}

• DATA_ADDR is the address of the data modified by the
processor.

• UPDATE_CPU_MASK is a 16 bit mask where the ith is
set to 1 is the ith processor already updated its cache.

• NEXT is the next node of the buffer.



When booting, DNA/OS initialize the write buffer by setting
the pointer to the WNB. This pointer is shared by all the
processors of the cluster. We added space restriction to the
buffer to limit the memory impact of the protocol. In this first
version, the WNB can not exceed 128KB.

1) Lock acquire: After acquiring a lock, the processor will
walk the buffer to potentially invalidate cache lines. Thanks
to the K1 architecture, asking to invalidate a data which
address is not contained in the cache will not invalidate any
line. Thus we simply walk the buffer, asking the processor
to invalidate every addresses contained in the buffer. Once
the line invalidated, the processor will set the ithbit of the
update mask accordingly to its identification number. One of
the possible enhancement to this process would be to directly
update the data instead of invalidating the line as proposed in
[14]. However the K1 architecture does not allow this update.
Once the processor finished the invalidation process, the rest
of the program is executed.

2) Cache modification: Once the processor acquires the
exclusivity on the data, each cached data writing will be
reported. A write-notice is created and added to the buffer. If
the data is already contained in the buffer, its bit mask will
be set to 0 far all the others processors. The write-notice is
also put on the top of the buffer. The case when the buffer is
full will be described later in this article.

3) Lock release: On lock release, the write-buffer will be
purged to the memory to make all the modifications visible
to the others processors. FIGURE 2 show the whole update
scheme used by the protocol.

4) Write-notice buffer management: The write notice buffer
is a linked list containing all the write-notice generated. We
choose to favor memory saving instead of computing time
since the memory on the MPPA-256 is limited.
Due to this lack of memory, we must limit the size taken by
the buffer in main memory. To address this issue we select
an arbitrary size limit of 128KB. This size corresponds to
approximately 1600 write-notice. We also note that the bigger
the write buffer is, the longer the buffer walk will be during
write-notice generation.
The write-notices accumulate in the buffer during the execu-
tion. We need to evict them when the buffer is full or when
all the processors updated the data in their cache.

• Adding a Time-To-Live to the write-notice based on the
number of acquisitions is a first solution. Removing all
the write-notice exceeding this TLL when a processor
acquire a lock.

• If the buffer exceed the size limit fixed by the user, we
choose to remove the 25% oldest write-notice base on an
LRU scheme. We use this method in the proposed version
of the protocol.

When evicting a write-notice the protocols needs to notify
each processors that did not updated its cache. To do that, the

processor detecting the buffer overflow will generate inter-
processor interrupt for each processor of the cluster. When
receiving an interrupt, the processor will walk the last 25%
write-notice contained in the buffer and apply the process
explained when releasing a lock. Once done, each processor
will wait for a barrier. Once all the processors attained the
barrier, they can executed the task they were processing before
the interrupt. The FIGURE 3 describe the buffer management
process.

Fig. 3. Full WNB management

E. Second implementation of the protocol

In this second version, we choose an other structure to
represent the write-notice:

struct write_notice_t
{

uint32_t data_addr;

write_notice_t * next;
}

• DATA_ADDR is the address of the modified data.
• NEXT is the next write-notice in the buffer.
The main modification of the protocol comes from the lack

of bit mask to know which processor already update its cache.
We do not use a public write-notice buffer containing up to
1600 write-notice but 16 private buffers. One private buffer
contains up to 125 entries. With this solution we save 16 bits
per write-notice and lessen the buffer walk time.
Further work may lead to searching how to put the write-notice



in the correct private buffers to avoid false invalidation of the
cache and reduce the buffer walk time.
With this protocol version, each lock acquired leads to the pri-
vate buffer clearance. This avoid useless processor interrupts,
reducing the buffer size overflow occurrences. Indeed, if one
buffer is to overflow, we only need to interrupt the buffer’s
owner.

V. RESULTS

To compare the result obtained with the different protocols
we developed two simple programs. The aim of these was to
validate the protocols and analyze their execution.
Due to a lack of time only two programs were used to analyze
our protocol. Further tests are done to compare the trace
analysis approach with the lock based approach.

A. Write notice based protocols

The two first programs are:
• Mat_mult, multiplying two 100x100 matrices with up to

16 threads (one per processor). The results are showed in
FIGURE 4.

• RGB2YUV, converting RBG format images to YUV
format with up to 16 threads (one per processor). The
results are showed in FIGURE 5.
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Fig. 4. 100× 100 matrices multiplication

B. Trace analysis VS Lock based

The following results were obtained with two programs
from the Splash2[15] benchmark. Due to the highly con-
strained environment of the MPPA-256 two other programs
(OCEAN from Splash2 and ParallelMJPEG) were to be ported
but remain a work in progress.
Both WATER-SPATIAL in FIGURE 6 and WATER-NSQUARED
in FIGURE 7 are ran 20 times. The graph represent the mean
time of all the executions.
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Fig. 5. RGB to YUV parallel conversion
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VI. DISCUSSION AND FURTHER ENHANCEMENTS

These results show the inefficiency of the protocols. These
performance issues are explained by the very specific architec-
ture of the MPPA-256 that does not fit the DNA/OS structure
well. But the tests also allowed to validate the protocols.
To address the performances issues due to the structure of
DNA/OS we modified its code to limit the overhead generated
by the kernel. The second set of tests realized with WATER-
SPATIAL and WATER-NSQUARED show better result and even
slight amelioration when enabling the caches.
To address the kernel overhead issue further work may rely
on new lightweight kernels specially developed for the K1
architecture. This method would allow to analyze the cache
protocols efficiency more precisely.
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VII. CONCLUSION

This article presented the work achieved to develop and
analyze multiple cache coherence protocols designed for the
many-core architecture developed by Kalray[2]. It shows the
increasing complexity of developing methods to ensure cache
coherency at the cluster level and the incapacity of state of
the art methods to produce efficient execution time on general
purpose operating systems.
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